
TGFF: Task Graphs for Free

Robert P. Dick \, David L. Rhodes y, and Wayne Wolf z

\yz Department of Electrical Engineering
Princeton University

Princeton, New Jersey 08544

y US Army CECOM/RDEC
AMSEL-RD-C2-SC-M

Fort Monmouth, New Jersey 07703

Abstract
We present a user-controllable, general-purpose,
pseudorandom task graph generator called Task
Graphs For Free (TGFF). TGFF creates problem
instances for use in allocation and scheduling re-
search. It has the ability to generate independent
tasks as well as task sets which are composed of par-
tially ordered task graphs. A complete description of
a scheduling problem instance is created, including
attributes for processors, communication resources,
tasks, and inter-task communication. The user may
parametrically control the correlations between at-
tributes. Sharing TGFF’s parameter settings allows
researchers to easily reproduce the examples used by
others, regardless of the platform on which TGFF is
run.

1. Introduction

Research in embedded real-time systems and op-
erating systems, as well as in more general allo-
cation and scheduling fields, is hampered by the
lack of a common base of examples. In general,
an example used in allocation and scheduling re-
search consists of a task set and a database of pro-
cessors and communication resources. A task set
is a collection of task graphs, each of which is
a directed acyclic graph (DAG) of communicating
tasks. Generation of sample task sets is often a re-
quirement when comparing allocation or schedul-
ing methods with each other [1], [2]. There are
generally no standard task sets available, making
comparison of different methods all but impossible.
Moreover, since task set generation is only a sec-
ondary aspect of scheduling research, the details
necessary to enable exact recreation of another re-

\ This work was supported in part by an NSF Graduate Fellow-
ship and in part by NSF under Grant No. MIP-9423574.

We would like to thank Niraj K. Jha, at Princeton University,
for his valuable comments regarding this paper.

searcher’s task sets are usually lacking. At best,
re-implementation of another researcher’s random
task set generation algorithm is tedious. At worst,
the new implementation subtly differs from the al-
gorithm used in the work with which a comparison
is made, resulting in misleading experimental re-
sults. These problems conspire to make it difficult
to compare one’s new allocator or scheduler with
existing algorithms.

This situation would be improved by the exis-
tence of a standard, shareable base of task sets
which are sufficiently general to enable applicabil-
ity to a wide range of areas (e.g., embedded systems
and parallel computing) and which can be tuned to
particular problem domains. Shareable examples
have been critical to progress in other areas such as
computer-aided design and computer science, e.g.,
the standard ISCAS digital circuits used to com-
pare digital circuit simulators [3] or the DIMACS
Boolean formula sets used for satisfiability solvers
[4]. However, a survey in the area of task sets re-
veals that researchers are “on their own”; this is
true among both the industrial and academic re-
search communities. Allocation and scheduling re-
search is a sufficiently broad area that any static
set of examples meeting the needs of the majority
of researchers would be gigantic. TGFF gives re-
searchers the flexibility to dynamically tailor exam-
ples to their work while making it easy for others
to regenerate these examples, given knowledge of a
few command line parameters. It has been used in
our current allocation and scheduling research [5].

Some allocation and scheduling research for very
high-level system design assumes that there are
no data dependencies between different tasks in a
task set, while at the other extreme, directed, cyclic
task graphs usually arise in low-level or small-
grain arenas, for example, in instruction-level code
analysis. TGFF’s task graph format, the DAG, is
commonly used in medium-level and high-level al-

location and scheduling research in academia and
industry [6]–[8]. TGFF is nonetheless capable of
generating sets of independent tasks as a special
case of the sets of DAGs for which it is primarily
intended.

TGFF includes a pseudorandom number gener-
ator [9]. This generator behaves identically on any
machine which represents mantissas with 24 or
more bits. Given the same command line options,
TGFF will generate the same task set, processors,
and communication resources when run on nearly
any architecture which supports floating point com-
putation.

2. Task Set Generation

Task graphs may be roughly categorized by their
structural properties. DAGs generated to solve
some numeric or algorithmic method, for exam-
ple an FFT computation or a Quicksort, exhibit
a particularized (and predictable) structure. Al-
though there also appears to be a lack of shareable
task graphs in this ‘structured-graph’ regime, these
types of graphs are more easily documented and
re-created than more randomly structured graphs.
Thus, the TGFF effort focuses on random task
graph generation subject to the limitations and pa-
rameters provided by the user.

TGFF generates a given number of random task
graphs, where the graph nodes are tasks and
the graph arcs represent communication between
tasks. Arcs are associated with parametrically con-
trolled data volume scalars; they represent inter-
process communication and impose a partial order
on nodes. TGFF accepts a random number genera-
tor seed parameter, among others. The value of the
seed affects both the structure as well as other as-
pects of the task set. Task set families containing
an arbitrary number of task sets may be generated
by varying the seed while holding all other param-
eters constant.

Documentation is provided with the software.
Therefore, only a high-level description is given
here. One of the most challenging aspects of gen-
erating task graphs is developing an algorithm for
defining their structure. For TGFF, there are a
number of parameters relevant to the task graph
structure: the average (n) and multiplier (m) for
the lower bound on the number of nodes in a graph,
and the maximum in-degree (id) and out-degree
(od) of graph nodes. While id and od are fixed for

every task graph generated in the task set, a value
for the lower bound is selected at random from the
uniform range [n �m; n + m].

Let x be a lower bound on the number of nodes
in a task graph, as randomly selected from the
[n�m; n+m] range. The task graph is constructed
by first creating a single-node graph and then iter-
atively augmenting it until the number of nodes in
the graph is greater than or equal to x.

The augmentation operates as follows. First ran-
domly select either a fan-out step or a fan-in step
(with equal probability). If it is a fan-out step, find
the set of nodes that have the largest amount of
‘available’ out-degree, i.e., those with the maximum
difference between od and the actual number of out-
arcs, and call this maximum difference r. Assum-
ing that r > 0, randomly pick a node, p, from the
set, and then add y nodes and arcs to the graph
from p to each of these new y nodes where y is a
random number ranging from 0 to r.

If it is a fan-in step, find a set of existing nodes
which are not over their od limit and call the cardi-
nality of this set q. Assuming that q > 0, randomly
select a value z in the range [0; max (q; id)]. Add a
single node to the graph and z arcs from z nodes
from the set to this new node.

This procedure generates DAGs which honor the
in-degree and out-degree limits, contain at least x

nodes, have a single start node, and do not have
duplicated arcs (e.g., those between the same pair
of nodes). The actual number of nodes in the gen-
erated task graph ranges from x to x+ od� 1.

TGFF associates a deadline with every termi-
nal node (a node which has no outgoing arcs) in
the task graphs it produces. A heuristic is used
to generate deadlines which are likely to be chal-
lenging but tractable. If depth is the length of the
maximum-length path from a task graph’s start
node to a given node, av exec time is the user-
specified average amount of time taken to execute
a task, and d laxity is an arbitrary scalar, then the
deadline for that node is set in the following man-
ner: deadline = depth � av exec time � d laxity.

Task sets containing task graphs with differing
periods are termed multi-rate task sets. TGFF is
capable of parametrically generating the periods of
task graphs in multi-rate task sets. The user spec-
ifies an array of period multipliers which is used
to determine the relative periods of different task
graphs in the task set. Selecting only small integer
multipliers allows one to generate a task set which

can feasibly be scheduled with the least common
multiple scheduling method [10]. However, a user
is free to specify multipliers which are vastly dif-
ferent or for which the least common multiple is
large, relative to the individual multipliers. Given
mul ar (an array of user-provided period multipli-
ers), p laxity (a user-provided scalar), and tg ar (an
array containing all the task graphs in the task
set), TGFF uses the algorithm in Figure 1 to assign
a period to each task graph. This algorithm gen-
erates periods which are based on the period mul-
tiplier array provided by the user and are loosely
related to the deadlines of individual task graphs.

mul ar is a user-specified array of multipliers
tg ar is an array of task graphs
mul ls is an empty list
p laxity is a user-specified scalar

while mul ls!elements < tg ar!elements:
select mul randomly from mul ar

append mul to mul ls

sort mul ls in increasing order
sort tg ar in order of increasing deadlines

gr = tg ar[last]!deadline = mul ls[last]

for each i in all task graph indexes:
tg ar[i]!period = gr �mul ls[i] � p laxity

Figure 1: Period computation algorithm
An important characteristic of task sets is the

relation between the deadlines and the periods of
their task graphs. While some schedulers allow
periods that are less than deadlines (e.g., [5], [8]),
many do not. If requested, TGFF prevents the pe-
riod of any task graph from being greater than any
of the deadlines within it.

In addition to the primary output file, a
PostScript file depicting the task set is generated.
Figure 2 shows an example task graph output by
TGFF’s PostScript facility. This is a problem in-
stance with a single task graph (-n1), a maxi-
mum in-degree and out-degree of two (-e2:2), a
number of nodes ranging from eight to twelve per
task graph (-g10:2), and a random seed of four
(-s4). In this illustration, each task is repre-
sented by a square and is labeled with its num-
ber. In addition to its task number, each ter-
minal node is labeled with its deadline. A task
graph family of 50 single task graphs can be gen-

erated by running TGFF with the following flags,
‘-n 1 -s x,’ where x is given values over the range
f0; 1; 2; � � � ; 49g. This statement is sufficient docu-
mentation to enable other researchers to reproduce'

&

$

%

TASK_GRAPH 0
 Period= 900
 In/Out Degree Limits= 2 / 2

0

1 2

3 4 5

6

7 8

9

10

d=200

d=300

d=500

Figure 2: Result for tgff
-n1 -e2:2 -g10:2 -s4

exactly the same fam-
ily. Figure 4 shows
the task set produced
when TGFF is run
with its in-degree re-
stricted to one and its
out-degree restricted
to two (-e1:2), forcing
TGFF to generate
out-trees rather than
more general DAGs.
As another exam-
ple, Figure 5 shows
the generation of
three task graphs
with widely varying
numbers of tasks.

3. Database Generation

Some work in allocation and scheduling optimizes
multiple attributes, e.g., execution time, power con-
sumption, testability, and cost. TGFF supports
this by allowing an arbitrary number of attributes,
which may be correlated or uncorrelated, to be as-
sociated with each processor and communication
resource.'

&

$

%

Random0.3

0.2

A

B

C

Multiplier

Communications
resource type

Parameter

price packet
size

packet
power

Average 5

-653

10 10

jit

jit
jit

price = 5 + jitter(3 * 0.3,)
packet_size = 10 + jitter(5 * 0.3,)

packet_power = 10 + jitter(-6 * 0.3,)

Figure 3: Setting communication resource
attributes

Although attribute generation for processors and
communication resources is similar, communica-
tion resource attribute generation is more straight-
forward. This process is most easily illustrated
with an example. Figure 3 depicts attribute gen-
eration for communication resources. TGFF gener-
ates a random scalar (com!rand), ranging from -1
to 1, for each communication resource. The user
specifies an average (av) and a multiplier (mul)

'

&

$

%

TASK_GRAPH 0
 Period= 400
 In/Out Degree Limits= 1 / 2

TASK_GRAPH 1
 Period= 1200
 In/Out Degree Limits= 1 / 2

TASK_GRAPH 2
 Period= 800
 In/Out Degree Limits= 1 / 2

0

1 2

3

4

5

6 7

0

1

2 3

4

5

6

7 8

9 10

11

12 13 14 15

0

1 2

3

4

5 6

7 8 9

10 11

12

13 14

15 16

17 18

d=100

d=500 d=500

d=100

d=300

d=700 d=700 d=700 d=700

d=300 d=300

d=400

d=300

d=500

d=600 d=600

d=400 d=400

Figure 4: Result for tgff -e1:2 -g15:14'

&

$

%

TASK_GRAPH 0
 Period= 675
 In/Out Degree Limits= 3 / 4

TASK_GRAPH 1
 Period= 1350
 In/Out Degree Limits= 3 / 4

TASK_GRAPH 2
 Period= 675
 In/Out Degree Limits= 3 / 4

0

1

2

3

4

5 6 7 8 9

0

1 2

3 4

5 6

7 8

9

10

11

12

13 14 15 16

17 18 19 20 21

22 23 24 25

26 27 28

29 30 31 32

33 34 35

36 37

0

1 2

3 4

5 6

d=300

d=200 d=200 d=200 d=200 d=200

d=600 d=600 d=600 d=600

d=400 d=400 d=400 d=400

d=500 d=500 d=500

d=600 d=600

d=300 d=300 d=300 d=300

d=700 d=700

d=800 d=800

d=200

d=300 d=300

Figure 5: Result for tgff -e3:4 -g20:18 -s7

value for each communication resource attribute,
as well as a jitter (jit) for the task set. Given a
scalar (x) and the task set jitter (jit) the function
jitter (x; jit) returns a randomly selected number
from the uniform range [x � (1� jit) ; x � (1 + jit)].
With this function, and the parameters specified by
the user, TGFF generates the attributes for each

communication resource, i.e.,

attrib = av + jitter (mul � com!rand; jit)

A processor has attributes which are indepen-
dent of tasks, as well as attributes which indicate
the behavior of each task on that processor. Inde-
pendent attribute generation is analogous to com-

munication resource attribute generation. Task-
processor intersection attributes, which provide in-
formation about a task’s execution on a particular
processor, are generated with procedure similar to
the one illustrated in Figure 3. However, for task-
processor intersections, the procedure operates in
three dimensions instead of two. In addition to an
array of random numbers associated with proces-
sors, there is a similar array associated with tasks.
Each attribute depends on the processor and task
for which the attribute is being generated.

@COMMUN 0 f
cost setup

12 68.5145
g

@COMMUN 1 f
cost setup

9 119.64
g

@COMMUN 2 f
cost setup

10 92.5214
g

Figure 6:
Communication

resource attributes

TGFF has a number
of default attributes:
cost for processors,
cost and transmit -
rate for communi-
cation resources, and
exec time for tasks.
These attributes can
be augmented or al-
tered. As an example
demonstrating TGFF’s
generality, consider the
following scenario: one
wants to add an at-
tribute which defines a
setup time for commu-
nication resources. This
attribute is, in general,
to be inversely related to cost. By giving TGFF the
following command-line flag, -C ’10:5:t:cost
100:-80:f:setup’ , one declares that cost has
an average value of 10, a multiplier of 5, and is
an integer. Similarly, setup has a average value
of 100, a multiplier of -80, and is a real number.
Setting cost ’s multiplier to a positive value and
setup ’s multiplier to a negative value causes
them, in general, to be inversely related to each
other. A portion of the resulting output appears in
Figure 6.

4. Conclusions

TGFF provides a standard method for generat-
ing random allocation and scheduling problem in-
stances involving periodic or non-periodic task sets.
Users have parametric control over an arbitrary
number of attributes for tasks, processors, and
communication resources. TGFF is capable of gen-
erating problem instances which are tuned to par-
ticular domains in allocation and scheduling re-

search. However, the ease with which its param-
eters can be changed allows it to be applied to
many allocation and scheduling domains. Although
TGFF simplifies the rapid production of large fam-
ilies of examples, this work’s primary goal is to en-
courage comparison of allocation and scheduling al-
gorithms by making it practical to reproduce the
examples used by other researchers. The source
code for TGFF is available via the “projects” link on
the http://www.ee.princeton.edu/˜cad web
page.

References

[1] T. Yang and A. Gerasoulis, “DSC: scheduling paral-
lel tasks on an unbounded number of processors,”
IEEE Trans. on Parallel and Distributed Systems,
vol. 30, pp. 951–67, Sep 1994.

[2] W. Zhao, K. Ramamrithan, and J. Stankovic, “Pre-
emptive scheduling under time and resource con-
straints,” IEEE Trans. on Computers, vol. 36,
pp. 949–60, Aug. 1987.

[3] M. Sengupta, “ISCAS ’89 benchmark information,”
http://www.cbl.ncsu.edu/CBL Docs/iscas89.html,
Mar. 1995.

[4] D. Du, J. Gu, and P. M. Pardalos, eds., Satisfiability
Problem: Theory and Applications, vol. 35 of DI-
MACS: Series in Discrete Mathematics and Com-
puter Science. Providence, RI: American Mathe-
matical Society, 1997.

[5] R. P. Dick and N. K. Jha, “MOGAC: A Multiobjec-
tive Genetic Algorithm for the Hardware-Software
Co-Synthesis of Distributed Embedded Systems,”
submitted to IEEE Trans. on Computer-Aided De-
sign.

[6] S. Prakash and A. Parker, “SOS: Synthesis of
application-specific heterogeneous multiprocessor
systems,” J. Parallel & Distributed Computers,
vol. 16, pp. 338–351, Dec. 1992.

[7] T.-Y. Yen and W. H. Wolf, “Communication synthe-
sis for distributed embedded systems,” in Proc. Int.
Conf. Computer-Aided Design, pp. 288–294, Nov.
1995.

[8] B. Dave, G. Lakshminarayana, and N. K. Jha,
“COSYN: Hardware-software co-synthesis of em-
bedded systems,” in Proc. Design Automation Conf.,
pp. 703–708, June 1997.

[9] G. Marsaglia and A. Zaman, “Toward a universal
random number generator,” Statistics & Probability
Letters, vol. 9, pp. 35–39, Jan. 1990.

[10] E. L. Lawler and C. U. Martel, “Scheduling period-
ically occurring tasks on multiple processors,” In-
formation Processing Letters, vol. 7, pp. 9–12, Feb.
1981.

